skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Freibott, Alexandra_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The 2014–2015 warm anomaly (aka “the Blob”), the largest of periodic and intensifying marine heat wave (MHW) perturbations in the northeast Pacific, may provide some insight about the future warmer ocean. Here, we use mixed‐layer carbon estimates for total phytoplankton, major size classes and functional groups from 45 CalCOFI cruises to: (1) compare 2014–2015 MHW impacts in the southern California Current System to baseline estimates from 2004 to 2013 and (2) to test a space‐for‐time exchange hypothesis that links biomass structure to variability of nitracline depth (NCD). Seasonal and inshore‐offshore analyses from nine stations revealed almost uniform 2°C MHW warming extending 700 km seaward, fourfold to sixfold declines in nitrate concentration and 18‐m deeper NCDs. Phytoplankton C decreased 16–21% compared to 45–65% for Chla, with the threefold difference due to altered C : Chla. Among size classes, percent composition of nanoplankton decreased and picophytoplankton increased, driven by higherProchlorococcusbiomass, whileSynechococcusand picoeukaryotes generally declined. Diatom and dinoflagellate C decreased in both onshore and offshore waters. Seasonally, the MHW delayed the normal winter refresh of surface nitrate, resulting in depressed stocks of total phytoplankton and nanoplankton,Synechococcusand picoeukaryotes during winter. Consistent with the space‐for‐time hypothesis, biomass variations for baseline and MHW cruises followed similar (not significantly different) slope relationships to NCD. All biomass components, exceptProchlorococcus, were negatively related to NCD, and community biomass structure realigned according to regression slopes differences with NCD variability. Empirically derived biomass‐NCD relationships could be useful for calibrating models that explore future food‐web impacts in this coastal upwelling system. 
    more » « less